Selecting pseudo supervision for unsupervised domain adaptive SAR target classification

نویسندگان

چکیده

Abstract In recent years, deep learning has brought significant progress for the problem of synthetic aperture radar (SAR) target classification. However, SAR image characteristics are highly sensitive to change imaging conditions. The inconsistency parameters (especially depression angle) leads distribution shift between training and test data severely deteriorates classification performance. To address this problem, in paper we propose an unsupervised domain adaptation method based on selective pseudo-labelling Our directly trains a model using from by generating pseudo-labels domain. key idea is iteratively select valuable samples optimize classifier. each iteration, breaking ties (BT) criterion adopted best with highest scores relative confidence. Besides, avoid error accumulation iterative process, class confusion regularization used improve accuracy pseudo-labelling. compared state-of-the-art methods, including supervised over moving stationary acquisition recognition (MSTAR) dataset. experimental results demonstrate that proposed can achieve better performance, especially when difference angles source images large. our also shows its superiority under limited-sample

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deep Unsupervised Domain Adaptation for Image Classification via Low Rank Representation Learning

Domain adaptation is a powerful technique given a wide amount of labeled data from similar attributes in different domains. In real-world applications, there is a huge number of data but almost more of them are unlabeled. It is effective in image classification where it is expensive and time-consuming to obtain adequate label data. We propose a novel method named DALRRL, which consists of deep ...

متن کامل

Feature Extraction for SAR Target Classification

In this paper, radar target classification based on Synthetic Aperture Radar (SAR) images is investigated. Different criteria for extracting features from MSTAR data are presented, and classification rates shown, emphasizing where the useful information in terms of recognition resides. The combination of different features is also examined, linking the classification accuracy of the system to t...

متن کامل

Sample-oriented Domain Adaptation for Image Classification

Image processing is a method to perform some operations on an image, in order to get an enhanced image or to extract some useful information from it. The conventional image processing algorithms cannot perform well in scenarios where the training images (source domain) that are used to learn the model have a different distribution with test images (target domain). Also, many real world applicat...

متن کامل

Knowledge-based Supervision for Domain-adaptive Semantic Role Labeling

Semantic role labeling (SRL) is a method for the semantic analysis of texts that adds a level of semantic abstraction on top of syntactic analysis, for instance adding semantic role labels like Agent on top of syntactic functions like Subject . SRL has been shown to benefit various natural language processing applications such as question answering, information extraction, and summarization. Au...

متن کامل

Joint Embedding and Classification for SAR Target Recognition

Deep learning can be an effective and efficient means to automatically detect and classify targets in synthetic aperture radar (SAR) images, but it is critical for trained neural networks to be robust to variations that exist between training and test environments. The layers in a neural network can be understood to be successive transformations of an input image into embedded feature represent...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: EURASIP Journal on Advances in Signal Processing

سال: 2022

ISSN: ['1687-6180', '1687-6172']

DOI: https://doi.org/10.1186/s13634-022-00906-y